12. Solvers¶
12.1. miplearn.solvers.abstract¶
- 
class 
miplearn.solvers.abstract.AbstractModel¶ Bases:
abc.ABC- 
abstract 
add_constrs(var_names: numpy.ndarray, constrs_lhs: numpy.ndarray, constrs_sense: numpy.ndarray, constrs_rhs: numpy.ndarray, stats: Optional[Dict] = None) → None¶ 
- 
abstract 
extract_after_load(h5: miplearn.h5.H5File) → None¶ 
- 
abstract 
extract_after_lp(h5: miplearn.h5.H5File) → None¶ 
- 
abstract 
extract_after_mip(h5: miplearn.h5.H5File) → None¶ 
- 
abstract 
fix_variables(var_names: numpy.ndarray, var_values: numpy.ndarray, stats: Optional[Dict] = None) → None¶ 
- 
abstract 
optimize() → None¶ 
- 
abstract 
relax() → miplearn.solvers.abstract.AbstractModel¶ 
- 
abstract 
set_warm_starts(var_names: numpy.ndarray, var_values: numpy.ndarray, stats: Optional[Dict] = None) → None¶ 
- 
abstract 
write(filename: str) → None¶ 
- 
abstract 
 
12.2. miplearn.solvers.gurobi¶
- 
class 
miplearn.solvers.gurobi.GurobiModel(inner: gurobipy.Model, find_violations: Optional[Callable] = None, fix_violations: Optional[Callable] = None)¶ Bases:
object- 
add_constrs(var_names: numpy.ndarray, constrs_lhs: numpy.ndarray, constrs_sense: numpy.ndarray, constrs_rhs: numpy.ndarray, stats: Optional[Dict] = None) → None¶ 
- 
extract_after_load(h5: miplearn.h5.H5File) → None¶ Given a model that has just been loaded, extracts static problem features, such as variable names and types, objective coefficients, etc.
- 
extract_after_lp(h5: miplearn.h5.H5File) → None¶ Given a linear programming model that has just been solved, extracts dynamic problem features, such as optimal LP solution, basis status, etc.
- 
extract_after_mip(h5: miplearn.h5.H5File) → None¶ Given a mixed-integer linear programming model that has just been solved, extracts dynamic problem features, such as optimal MIP solution.
- 
fix_variables(var_names: numpy.ndarray, var_values: numpy.ndarray, stats: Optional[Dict] = None) → None¶ 
- 
optimize() → None¶ 
- 
relax() → miplearn.solvers.gurobi.GurobiModel¶ 
- 
set_time_limit(time_limit_sec: float) → None¶ 
- 
set_warm_starts(var_names: numpy.ndarray, var_values: numpy.ndarray, stats: Optional[Dict] = None) → None¶ 
- 
write(filename: str) → None¶ 
- 
 
12.3. miplearn.solvers.learning¶
- 
class 
miplearn.solvers.learning.LearningSolver(components: List[Any], skip_lp=False)¶ Bases:
object- 
fit(data_filenames)¶ 
- 
optimize(model: Union[str, miplearn.solvers.abstract.AbstractModel], build_model=None)¶ 
-