11. Collectors & Extractors#
11.1. miplearn.classifiers.minprob#
- class miplearn.classifiers.minprob.MinProbabilityClassifier(base_clf: ~typing.Any, thresholds: ~typing.List[float], clone_fn: ~typing.Callable[[~typing.Any], ~typing.Any] = <function clone>)#
- Bases: - BaseEstimator- Meta-classifier that returns NaN for predictions made by a base classifier that have probability below a given threshold. More specifically, this meta-classifier calls base_clf.predict_proba and compares the result against the provided thresholds. If the probability for one of the classes is above its threshold, the meta-classifier returns that prediction. Otherwise, it returns NaN. - fit(x: ndarray, y: ndarray) None#
 - predict(x: ndarray) ndarray#
 - set_fit_request(*, x: bool | None | str = '$UNCHANGED$') MinProbabilityClassifier#
- Request metadata passed to the - fitmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config()). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- fitif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- fit.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- x (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for - xparameter in- fit.
- Returns:
- self – The updated object. 
- Return type:
- object 
 
 - set_predict_request(*, x: bool | None | str = '$UNCHANGED$') MinProbabilityClassifier#
- Request metadata passed to the - predictmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config()). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- predictif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- predict.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- x (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for - xparameter in- predict.
- Returns:
- self – The updated object. 
- Return type:
- object 
 
 
11.2. miplearn.classifiers.singleclass#
- class miplearn.classifiers.singleclass.SingleClassFix(base_clf: ~sklearn.base.BaseEstimator, clone_fn: ~typing.Callable = <function clone>)#
- Bases: - BaseEstimator- Some sklearn classifiers, such as logistic regression, have issues with datasets that contain a single class. This meta-classifier fixes the issue. If the training data contains a single class, this meta-classifier always returns that class as a prediction. Otherwise, it fits the provided base classifier, and returns its predictions instead. - fit(x: ndarray, y: ndarray) None#
 - predict(x: ndarray) ndarray#
 - set_fit_request(*, x: bool | None | str = '$UNCHANGED$') SingleClassFix#
- Request metadata passed to the - fitmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config()). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- fitif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- fit.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- x (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for - xparameter in- fit.
- Returns:
- self – The updated object. 
- Return type:
- object 
 
 - set_predict_request(*, x: bool | None | str = '$UNCHANGED$') SingleClassFix#
- Request metadata passed to the - predictmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config()). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- predictif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- predict.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- x (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for - xparameter in- predict.
- Returns:
- self – The updated object. 
- Return type:
- object 
 
 
11.3. miplearn.collectors.basic#
11.4. miplearn.extractors.fields#
- class miplearn.extractors.fields.H5FieldsExtractor(instance_fields: List[str] | None = None, var_fields: List[str] | None = None, constr_fields: List[str] | None = None)#
- Bases: - FeaturesExtractor
11.5. miplearn.extractors.AlvLouWeh2017#
- class miplearn.extractors.AlvLouWeh2017.AlvLouWeh2017Extractor(with_m1: bool = True, with_m2: bool = True, with_m3: bool = True)#
- Bases: - FeaturesExtractor