12. Components#
12.1. miplearn.components.primal.actions#
- class miplearn.components.primal.actions.EnforceProximity(tol: float)#
Bases:
PrimalComponentAction
- perform(model: AbstractModel, var_names: ndarray, var_values: ndarray, stats: Dict | None) None #
- class miplearn.components.primal.actions.FixVariables#
Bases:
PrimalComponentAction
- perform(model: AbstractModel, var_names: ndarray, var_values: ndarray, stats: Dict | None) None #
- class miplearn.components.primal.actions.PrimalComponentAction#
Bases:
ABC
- abstract perform(model: AbstractModel, var_names: ndarray, var_values: ndarray, stats: Dict | None) None #
- class miplearn.components.primal.actions.SetWarmStart#
Bases:
PrimalComponentAction
- perform(model: AbstractModel, var_names: ndarray, var_values: ndarray, stats: Dict | None) None #
12.2. miplearn.components.primal.expert#
- class miplearn.components.primal.expert.ExpertPrimalComponent(action: PrimalComponentAction)#
Bases:
object
- before_mip(test_h5: str, model: AbstractModel, stats: Dict[str, Any]) None #
- fit(train_h5: List[str]) None #
12.3. miplearn.components.primal.indep#
- class miplearn.components.primal.indep.IndependentVarsPrimalComponent(base_clf: ~typing.Any, extractor: ~miplearn.extractors.abstract.FeaturesExtractor, action: ~miplearn.components.primal.actions.PrimalComponentAction, clone_fn: ~typing.Callable[[~typing.Any], ~typing.Any] = <function clone>)#
Bases:
object
- before_mip(test_h5: str, model: AbstractModel, stats: Dict[str, Any]) None #
- fit(train_h5: List[str]) None #
12.4. miplearn.components.primal.joint#
- class miplearn.components.primal.joint.JointVarsPrimalComponent(clf: Any, extractor: FeaturesExtractor, action: PrimalComponentAction)#
Bases:
object
- before_mip(test_h5: str, model: AbstractModel, stats: Dict[str, Any]) None #
- fit(train_h5: List[str]) None #
12.5. miplearn.components.primal.mem#
- class miplearn.components.primal.mem.MemorizingPrimalComponent(clf: Any, extractor: FeaturesExtractor, constructor: SolutionConstructor, action: PrimalComponentAction)#
Bases:
object
Component that memorizes all solutions seen during training, then fits a single classifier to predict which of the memorized solutions should be provided to the solver. Optionally combines multiple memorized solutions into a single, partial one.
- before_mip(test_h5: str, model: AbstractModel, stats: Dict[str, Any]) None #
- fit(train_h5: List[str]) None #
- class miplearn.components.primal.mem.MergeTopSolutions(k: int, thresholds: List[float])#
Bases:
SolutionConstructor
Warm start construction strategy that first selects the top k solutions, then merges them into a single solution.
To merge the solutions, the strategy first computes the mean optimal value of each decision variable, then: (i) sets the variable to zero if the mean is below thresholds[0]; (ii) sets the variable to one if the mean is above thresholds[1]; (iii) leaves the variable free otherwise.
- construct(y_proba: ndarray, solutions: ndarray) ndarray #
- class miplearn.components.primal.mem.SelectTopSolutions(k: int)#
Bases:
SolutionConstructor
Warm start construction strategy that selects and returns the top k solutions.
- construct(y_proba: ndarray, solutions: ndarray) ndarray #