13. Solvers

13.1. miplearn.solvers.abstract

class miplearn.solvers.abstract.AbstractModel

Bases: abc.ABC

WHERE_CUTS = 'cuts'
WHERE_DEFAULT = 'default'
WHERE_LAZY = 'lazy'
abstract add_constrs(var_names: numpy.ndarray, constrs_lhs: numpy.ndarray, constrs_sense: numpy.ndarray, constrs_rhs: numpy.ndarray, stats: Optional[Dict] = None)None
abstract extract_after_load(h5: miplearn.h5.H5File)None
abstract extract_after_lp(h5: miplearn.h5.H5File)None
abstract extract_after_mip(h5: miplearn.h5.H5File)None
abstract fix_variables(var_names: numpy.ndarray, var_values: numpy.ndarray, stats: Optional[Dict] = None)None
lazy_enforce(violations: List[Any])None
abstract optimize()None
abstract relax()miplearn.solvers.abstract.AbstractModel
set_cuts(cuts: List)None
abstract set_warm_starts(var_names: numpy.ndarray, var_values: numpy.ndarray, stats: Optional[Dict] = None)None
abstract write(filename: str)None

13.2. miplearn.solvers.gurobi

class miplearn.solvers.gurobi.GurobiModel(inner: gurobipy.Model, lazy_separate: Optional[Callable] = None, lazy_enforce: Optional[Callable] = None, cuts_separate: Optional[Callable] = None, cuts_enforce: Optional[Callable] = None)

Bases: miplearn.solvers.abstract.AbstractModel

add_constr(constr: Any)None
add_constrs(var_names: numpy.ndarray, constrs_lhs: numpy.ndarray, constrs_sense: numpy.ndarray, constrs_rhs: numpy.ndarray, stats: Optional[Dict] = None)None
extract_after_load(h5: miplearn.h5.H5File)None

Given a model that has just been loaded, extracts static problem features, such as variable names and types, objective coefficients, etc.

extract_after_lp(h5: miplearn.h5.H5File)None

Given a linear programming model that has just been solved, extracts dynamic problem features, such as optimal LP solution, basis status, etc.

extract_after_mip(h5: miplearn.h5.H5File)None

Given a mixed-integer linear programming model that has just been solved, extracts dynamic problem features, such as optimal MIP solution.

fix_variables(var_names: numpy.ndarray, var_values: numpy.ndarray, stats: Optional[Dict] = None)None
optimize()None
relax()miplearn.solvers.gurobi.GurobiModel
set_time_limit(time_limit_sec: float)None
set_warm_starts(var_names: numpy.ndarray, var_values: numpy.ndarray, stats: Optional[Dict] = None)None
write(filename: str)None

13.3. miplearn.solvers.learning

class miplearn.solvers.learning.LearningSolver(components: List[Any], skip_lp: bool = False)

Bases: object

fit(data_filenames: List[str])None
optimize(model: Union[str, miplearn.solvers.abstract.AbstractModel], build_model: Optional[Callable] = None)Tuple[miplearn.solvers.abstract.AbstractModel, Dict[str, Any]]