Skip to article frontmatterSkip to article content
Case-stude

Data Input

A short description of an input data file.

Authors
Affiliations
Energy Systems and Infrastructure Analysis.
Energy Systems and Infrastructure Analysis.

The prototype case study was created to show the functionality of stre3am. This page illustrates the typical form of some of the input data, as well as a short description of all the data required. This will reference the excel spreadsheet f0.xlsx which contains all inputs for the model.

Key data

The key data refers to information that is used to construct every other data structure of the model. For example, the cardinality of the period and subperiod sets (P\mathcal{P} & P1\mathcal{P}_1), location (L\mathcal{L}), retrofit and new technology sets (Kr\mathcal{K}_r & Kn\mathcal{K}_n), etc.

Table 1:Key data sheet.

namevalueDescription
n_periods2number of periods
n_subperiods4number of subperiods
n_loc10number of locations
n_rtft5number of retrofit tech.
n_new5number of new plant tech.
n_fstck2number of feedstocks
n_node2number of process node
n_mat5number of materials
n_link1number of edges
yr_subperiod5number of year/subperiods
y02020initial year
x_ub2expansion units upper bound
interest0.1interest rate
sf_cap0.001capacity scaling factor
sf_cash1cash scaling factor
sf_heat0.001heat scaling factor
sf_elec0.001electric scaling factor
sf_em0.001emission scaling factor
key_node2key node

The previous table also contains floating point values for parameters like scaling factors (sf_), etc.

Row to location mapped arrays

Several parameters are indexed by location. In this example, L=10|\mathcal{L}|=10, thus data like the initial capacity is given as a column vector with 10 rows. I.e.,

Table 2:Initial capacity

locationc0 (scaled)
10.074025541
20.088821461
30.069424165
40.071001601
50.078500753
60.055332288
70.081475707
80.069308589
90.077918123
100.096303537

The mapping of row to location is the preferred layout in stre3am. Multi-dimensional parameters, e.g., the retrofit electricity intensity factor rukln\mathtt{r_u}_{kln} —which has 3 dimensions, technology, location and node— has a row mapped to location, and uses columns for each combination of technology and node. For example, in the next table Kr=5|\mathcal{K}_r|=5 and N=2|\mathcal{N}|=2, which yields 10 columns.

Table 3:Electricity intensity factor

(retr.,node)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(1, 2)(2, 2)(3, 2)(4, 2)(5, 2)
l=12.9999724192.8499737982.9999724195.6243491013.8999641450.2999972420.284997380.2999972420.4749556870.389996415
l=22.9994361552.8494643472.9994361555.6226667173.8992670020.2999436160.2849464350.2999436160.4748256530.3899267
l=33.0000073362.8500069693.0000073365.6245933993.9000095370.3000007340.2850006970.3000007340.4749731380.390000954
l=43.0001219712.8501158733.0001219715.6251206583.9001585630.3000121970.2850115870.3000121970.475012110.390015856
l=52.9998263652.8498350472.9998263655.6260160883.8997742750.2999826370.2849835050.2999826370.4750619510.389977427
l=62.9995713722.8495928032.9995713725.6251402563.8994427840.2999571370.284959280.2999571370.4749950630.389944278
l=73.0006524092.8506197893.0006524095.6249125443.9008481320.3000652410.2850619790.3000652410.4750159170.390084813
l=83.00042472.8504034653.00042475.6261740023.900552110.300042470.2850403460.300042470.4750924230.390055211
l=92.9999228672.8499267242.9999228675.6245507743.8998997280.2999922870.2849926720.2999922870.4749674810.389989973
l=102.9999928572.8499932142.9999928575.6243854763.8999907140.2999992860.2849993210.2999992860.4749587940.389999071

Row to time-slice mapped data

A limited amount of input data is indexed by time-slice. This is due to their time-dependency. For example the overall demand changes from time-slice to time-slice yielding an array as follows:

Table 4:Overall demand

(per,subp)time slicedemand
(1,1)10.60968941
(1,2)20.69677828
(1,3)30.78386715
(1,4)40.87095601
(2,1)50.95804488
(2,2)61.04513375
(2,3)71.13222262
(2,4)81.21931149

Sheet name reference

The input data spreadsheet f0.xlsx has all the relevant information for the prototype case study of stre3am. The following table is a description of the sheets/parameters involved.

Sheet namedescription
keyKey parameters
n_rfunumber of fuels (retrofit)
n_nfunumber of fuels (new)
c0initial capacity
e_Cexpansion factor
e_c_ubexpansion upper bound
e_loanFactexpansion loan factor
e_l_ubexpansion loan ub
e_Annexpansion annuity factor
e_ann_ubexpansion annuity ub
e_ladd_ubexpansion loan add ub
e_loan_ubexpansion loan ub
e_pay_ubexpansion payment ub
r_filterretrofit technology filter
r_cp_ubretrofit capacity ub
r_cpb_ubretrofit installed capacity ub
r_c_Hretrofit heat factor
r_rhs_Hretrofit heat rhs
r_eh_ubretrofit heat ub
r_c_Fretrofit fuel factor
r_rhs_Fretrofit fuel rhs
r_ehf_ubretrofit fuel heat ub
r_c_Uretrofit electricity factor
r_rhs_Uretrofit electricity rhs
r_c_UonSiteretrofit elec. Onsite
r_u_ubretrofit electricity ub
r_c_cperetrofit process emission factor
r_rhs_cperetrofit process emission rhs
r_cpe_ubretrofit process emission ub
r_c_Feretrofit fuel emission
r_c_Fgenfretrofit onsite fuel emission
r_u_ehf_ubretrofit onsite electricity fuel ub
r_c_Hrretrofit onsite electricty heat rate
r_fu_e_ubretrofit fuel emission ub
r_u_fu_e_ubretrofit onsite electricty fuel emission ub
r_ep0_ubretrofit overall emissions
r_chiretrofit emission capture factor
r_ep1ge_ubretrofit emitted ub
r_sigmaretrofit emission storage factor
r_ep1gce_ubretrofit emission captured emitted ub
r_ep1gcs_ubretrofit emission captured storaged ub
r_c_fOnmretrofit fixed o&m factor
r_rhs_fOnmretrofit fixed o&m rhs
r_cfonm_ubretrofit fixed ub
r_c_vOnmretrofit variable o&m factor
r_rhs_vOnmretrofit rhs o&m rhs
r_cvonm_ubretrofit variable o&m ub
r_e_c_ubretrofit expansion capacity
r_loanFactretrofit loan factor
r_l0_ubretrofit loan ub
r_le_ubretrofit expansion ub
r_Annretrofit annuity factor
r_ann0_bMretrofit annuity ub
r_anne_bMretrofit annuity expansion ub
r_l0add_bMretrofit loan added ub
r_leadd_bMretrofit expansion loan ub
r_loan_ubretofit loan ub
r_pay0_ubretrofit payment ub
r_paye_ubretrofit expansion ub
r_c_Fstckretrofit feedstock factor
r_rhs_Fstckretrofit feedstock ub
r_fstck_ubretrofit feedstock ub
r_Kmbretrofit material ratio (by node)
r_x_in_ubretrofit input material ub (by node)
r_x_out_ubretrofit output material ub (by node)
r_c_upsein_rateretrofit upstream emission rate (by node)
r_ups_e_mt_in_ubretrofit upstream emission ub (by node)
n_filternew technology filter
n_cp_bMnew capacity ub
n_c0_bMnew installed capacity ub
n_c0_lonew installed capacity lb
n_loanFactnew loan factor
n_l_bMnew loan ub
n_Annnew annuity factor
n_ann_bMnew annuity ub
n_ladd_bMnew added loan ub
n_loan_bMnew loan ub
n_pay_bMnew payment ub
n_c_Hnew heat factor
n_rhs_Hnew heat rhs
n_eh_ubnew heat ub
n_c_Fnew fuel factor
n_rhs_Fnew fuel rhs
n_ehf_ubnew fuel heat factor
n_c_Unew electricty factor
n_rhs_Unew electricty rhs
n_c_UonSitenew electricity onsite factor
n_u_ubnew electricity ub
n_c_cpenew process emission factor
n_rhs_cpenew process emission rhs
n_cpe_ubnew process emission ub
n_c_Fenew fuel emission factor
n_c_Fgenfnew onsite elec. fuel emission factor
n_u_ehf_ubnew onsite fuel emission ub
n_c_Hrnew onsite heat rate
n_fu_e_ubnew fuel emission ub
n_u_fu_e_ubnew onsite elec. Fuel emission ub
n_ep0_bMnew overall emission ub
n_chinew emission capture factor
n_ep1ge_bMnew emission emitted ub
n_sigmanew emission storage factor
n_ep1gce_bMnew emission captured emitted ub
n_ep1gcs_bMnew emission captured storaged ub
n_c_fOnmnew fixed o&m factor
n_rhs_fOnmnew fixed rhs
n_cfonm_bMnew fixed o&m ub
n_c_vOnmnew variable o&m factor
n_rhs_vOnmnew variable o&m ub
n_cvonm_bMnew variable o&m ub
n_c_Fstcknew feedstock factor
n_rhs_Fstcknew feedstock rhs
n_fstck_ubnew feedstock ub
n_Kmbnew material ratio (by node)
n_x_in_ubnew input material ub (by node)
n_x_out_ubnew output material ub (by node)
n_c_upsein_ratenew upstream emission rate (by node)
n_ups_e_mt_in_ubnew upstream emission ub (by node)
c_u_costelectricity cost
c_r_ehf_costretrofit fuel cost
c_n_ehf_costnew fuel cost
c_cts_costcapture and storage cost
c_xin_costinput material cost
o_cp_ubexisting capacity ub
o_cpe_bMexisting emission ub
o_u_ubexisting electricity ub
o_ehf_ubexisting fuel ub
o_ep0_bMexisting overall emission ub
o_ep1ge_bMexisting emission emitted ub
o_ep1gce_bMexisting emission captured ub
o_ep1gcs_bMexisting emission storaged captured ub
o_ups_e_mt_in_ubexisting upstream material emission ub
o_pay_bMexisting payment ub
o_cfonm_bMexisting fixed o&m ub
o_cvonm_bMexisting variable o&m ub
o_fstck_ubexisting feedstock ub
o_x_in_ubexisting input material ub
o_x_out_ubexisting output material ub
t_ret_c_bMretirement cost ub
t_loan_bMtotal loan ub
r_loan0initial loan
discountdiscount
demanddemand
co2_budgetemission budget
GcIgrid carbon intensity
node_matnode-material matrix
skip_mbskip node mass balance
input_matinput material flag
output_matoutput material flag
links_listnode edges list
ckeynode key material
nd_en_fltrnode energy flag
nd_em_fltrnode emission flag
r_Kkey_jretrofit key material
n_Kkey_jnew key material
min_cprnode minimum capacity factor
fuel_namesfuel names
unitsunit names
RF_labelretrofit labels
NW_labelnew labels